7.Binomial Theorem
hard

${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો.

A

$ - {}^{2n}{C_{n - 1}}$

B

$ - {}^{2n}{C_n}$

C

$ {}^{2n}{C_{n - 1}}$

D

$ {}^{2n}{C_n}$

(AIEEE-2012)

Solution

Given expansion can be re-written as

$\left(\frac{x-1}{x}\right)^{n} \cdot(1-x)^{n}=(-1)^{n} x^{-n}(1-x)^{2 n}$

Total number of terms will be $2n+1$ which is odd

$(\because 2 n \text { is always even })$

$\text { Middle term }=\frac{2 n+1+1}{2}=(n+1) \text { th }$

Now, $T_{r+1}=^{n} C_{r}(1)^{r} x^{n-r}$

So, $\frac{2 n_{C_{n}-x^{2 n-n}}}{x^{n} \cdot(-1)^{n}}=^{2 n} C_{n} \cdot(-1)^{n}$

Middle term is an odd term So, $n+1$ will be odd.

So, $n$ will be even.

$\therefore $ Required answer is $^{2 n}{C}_{n}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.